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A B S T R A C T

Consistent, cross-mission retrievals of near-surface concentration of chlorophyll-a (Chla) in various aquatic
ecosystems with broad ranges of trophic levels have long been a complex undertaking. Here, we introduce a
machine-learning model, the Mixture Density Network (MDN), that largely outperforms existing algorithms
when applied across different bio-optical regimes in inland and coastal waters. The model is trained and vali-
dated using a sizeable database of co-located Chla measurements (n=2943) and in situ hyperspectral radio-
metric data resampled to simulate the Multispectral Instrument (MSI) and the Ocean and Land Color Imager
(OLCI) onboard Sentinel-2A/B and Sentinel-3A/B, respectively. Our performance evaluations of the model, via
two-thirds of the in situ dataset with Chla ranging from 0.2 to 1209mg/m3 and a mean Chla of 21.7mg/m3,
suggest significant improvements in Chla retrievals. For both MSI and OLCI, the mean absolute logarithmic error
(MAE) and logarithmic bias (Bias) across the entire range reduced by 40–60%, whereas the root mean squared
logarithmic error (RMSLE) and the median absolute percentage error (MAPE) improved two-to-three times over
those from the state-of-the-art algorithms. Using independent Chla matchups (n<800) for Sentinel-2A/B and
-3A, we show that the MDN model provides most accurate products from recorded images processed via three
different atmospheric correction processors, namely the SeaWiFS Data Analysis System (SeaDAS), POLYMER,
and ACOLITE, though the model is found to be sensitive to uncertainties in remote-sensing reflectance products.
This manuscript serves as a preliminary study on a machine-learning algorithm with potential utility in seamless
construction of Chla data records in inland and coastal waters, i.e., harmonized, comparable products via a
single algorithm for MSI and OLCI data processing. The model performance is anticipated to enhance by im-
proving the global representativeness of the training data as well as simultaneous retrievals of multiple optically
active components of the water column.
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1. Introduction

As the primary pigment in phytoplankton, chlorophyll-a has his-
torically been regarded as a proxy for biomass in the water column or
living terrestrial plants. While an adequate amount of biomass is vital to
a healthy and productive aquatic ecosystem, its excessive presence may
be harmful, posing threats to public health (Brooks et al., 2016) and
wildlife (Carmichael, 2001), and potentially detrimental to ecosystem
function and health (Carvalho et al., 2013; Duan et al., 2009). Optical
remote sensing has long been utilized as an effective observation
methodology for providing estimates of near-surface concentration of
chlorophyll-a (Chla) in the open ocean (Smith and Baker, 1982; Yoder
et al., 1993), as well as in coastal (Gordon et al., 1983) and inland
waters (Bukata et al., 1981; Dekker et al., 1992; Jain and Miller, 1976;
Mittenzwey et al., 1992; Yacobi et al., 1995). In principle, optical
radiometric measurements of oceanic waters allow for accurate de-
termination of ocean color, which is primarily governed by Chla and
any of its accessory pigments. In inland and coastal waters, the color is
further modulated by the presence of organic and inorganic particles
and dissolved matter (Mobley, 1994) rendering retrievals of Chla a
more challenging task.

Remotely sensed aquatic signals recorded at the top-of-atmosphere
(TOA) are bulk optical properties emanating from the absorption (a)
and scattering (b) of solar photons in the atmosphere, within the water
column, and at the air-water interface. After accounting for the atmo-
spheric effects, the TOA signal is reduced to the remote sensing re-
flectance (Rrs) – the ratio of water-leaving radiance to the total down-
welling irradiance just above water – from which in-water optical
properties are quantified. It is, therefore, the in-water absorption and
scattering, or in a more general sense, the Inherent Optical Properties
(IOPs), that determine the color of water. Recognizing this physical
principle, widely used Chla retrieval algorithms can take two forms,
namely semi-analytical approaches, which derive IOPs from Rrs and
then estimate Chla, and semi-empirical methods that estimate Chla
directly from Rrs. The former approach commonly relies on estimates of
phytoplankton specific absorption (aph∗) peaks within the red portions
of the spectrum, e.g., aph∗(670) (Gons, 1999; Lee et al., 2002; Odermatt
et al., 2018; Schroeder et al., 2007) and has proven to perform sa-
tisfactorily in some aquatic ecosystems (Odermatt et al., 2018).

Using the underlying physics driven by phytoplankton absorption
and backscattering properties, semi-empirical methods typically em-
ploy band combinations of Rrs in the blue-green (O'Reilly et al., 1998)
or in the red and near-infrared (NIR) regions (Gitelson, 1992). This
category also comprises line-height (LH) approaches that utilize a
combination of three bands in either red or red-NIR band(s) to compute
characteristic peaks in the spectral reflectance associated with Chla.
Examples of this scheme include the Maximum Chlorophyll Index (MCI)
(Gower et al., 2005), the Fluorescence Line Height (FLH) (Letelier and
Abbott, 1996), or the Maximum Peak Height (MPH) (Matthews et al.,
2012). The blue-green ratio assumes that the magnitude and the shape
of the reflectance spectrum are primarily governed by Chla with
minimal effects from organic/inorganic material within the upper
water column. More than two decades of research have revealed certain
advantages and disadvantages associated with the blue-green ratio
method. Many studies have shown that while the blue-green ratio
correlates well with Chla, performs well in clear waters, and provides a
good indication of the relative distribution of biomass, it often tends to
overestimate Chla in inland and coastal waters (Freitas and Dierssen,
2019; Le et al., 2013; McKee et al., 2007; Novoa et al., 2012; Tang et al.,
2003; Tzortziou et al., 2007). The polynomial coefficients of the blue-
green ratio algorithm (hereafter referred to as OC) have recently been
fine-tuned based on spectral configurations of various satellite sensors,
including the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), the
MODerate resolution Imaging Spectroradiometer (MODIS), the Opera-
tional Land Imager (OLI), and the MEdium Resolution Imaging Spec-
trometer (MERIS) (O'Reilly and Werdell, 2019).

On the other hand, the red-NIR method assumes a negligible ab-
sorption by colored dissolved organic matter (aCDOM) and non-algal
particles (aNAP) as well as spectrally invariant backscattering in the red
and NIR region (Gitelson, 1992; Gitelson et al., 2007; Gower and
Borstad, 1990). This approach has shown promise for biomass retrievals
in phytoplankton-dominated mesotrophic, eutrophic, or hypereu-
trophic waters and is not intended for use in waters with low Chla,
where the reflectance in red and NIR regions are not sensitive to var-
iations in Chla (Gitelson et al., 2009; Gurlin et al., 2011; Moses et al.,
2009a). Various formulations of this approach have been adopted for
MERIS spectral bands to retrieve Chla (Gilerson et al., 2010; Gower and
King, 2012). Recently, based on a previously developed hybrid meth-
odology for open-ocean retrievals (Hu et al., 2012), Smith et al. (2018)
proposed a weighting scheme (hereafter referred to as Blend) com-
bining the two band-ratio algorithms: the OCx (Hu et al., 2012; O'Reilly
et al., 1998; O'Reilly and Werdell, 2019) and a red-NIR 2-Band ratio
(see Appendix A for Eqs. (A.6) and (A.8)) (Moses et al., 2012). These
methods based upon red or NIR bands, including LH and band ratios,
are thought to be less sensitive to uncertainties in atmospheric correc-
tion. Essentially, one could perform Chla retrievals using Rayleigh-
corrected spectral reflectance and/or radiance (Matthews et al., 2012;
Matthews and Odermatt, 2015; Wynne et al., 2010).

Other mathematical methods (Giardino et al., 2007) have also been
proposed; however, their utilities have not been widely evaluated.
Statistical approaches like neural networks (NN) have also been shown
to perform reasonably well through a few different studies. Vilas et al.
(2011) implemented a Multilayer Perceptron NN trained for three dif-
ferent water types and reported MERIS-derived Chla retrievals with
RMSEs ~0.8mg/m3 with a mean of ~2.5mg/m3 and a range of
0.03–8mg/m3 in coastal waters of Galician rias (northwest coast of
Spain). They asserted that their strategy led to improved performances
compared to the standard NN approach implemented in the MERIS data
processing scheme (Doerffer and Schiller, 2007; Schroeder et al., 2007).
Also, Binding et al. (2011) and Palmer et al. (2015) showed that, for
MERIS data processing, the LH approaches perform better than NN-
based Chla retrievals in eutrophic waters of Lake of the Woods and Lake
Balaton with Chla >10mg/m3; however, one of the NN processors
(Schroeder et al., 2007) was shown to outperform the rest within the
lower ranges of Chla. Given various degrees in the sensitivity of Chla
algorithms to different water types, water-type retrieval algorithms
have drawn major attention (Moore et al., 2001; Neil et al., 2019;
Spyrakos et al., 2018; Vertucci and Likens, 1989). These methods,
however, require more extensive development/validation data and are
highly impacted by uncertainties in the atmospheric correction ren-
dering reliable water-type classification a daunting task (Neil et al.,
2019).

One major disadvantage in most of these research activities is the
limited availability of extensive in situ radiometric and biogeochemical
data (Palmer et al., 2015). The availability of such data may furnish a
more representative dataset enabling enhancements in Chla retrieval
algorithms and their validations (Mouw et al., 2015). Recent launches
of Sentinel-2 and Sentinel-3 with sensors capable of quantifying in-
water optical properties have spurred the science community to strive
to devise improved methods for retrievals of Chla and other water
constituents (Ansper and Alikas, 2019; Cazzaniga et al., 2019; Gernez
et al., 2017; Toming et al., 2016). This manuscript introduces a robust
machine-learning approach for seamless estimations of Chla in inland
and nearshore coastal waters from the MultiSpectral Instrument (MSI)
and the Ocean and Land Color Imager (OLCI) aboard the Sentinel-2 and
Sentinel-3 missions, respectively. That is, we aim to produce consistent,
analogous cross-mission Chla products through a single algorithm. The
developed algorithm, a class of neural networks known as a Mixture
Density Network (MDN), is trained with 1000 co-located in situ Rrs−
Chla pairs. We demonstrate the performance of the model against a
number of alternate, previously published algorithms (e.g., OC and
Blend) using two-thirds of the entire in situ data (n ~ 1943; Fig. 1)
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acquired in many different typically optically deep waters, i.e., effects
of bottom reflection are assumed negligible. This manuscript follows
with a description of the in situ dataset, the MDN model, its various
components, and its performance assessment. The model performance
is further assessed using independent in situ Chla matchups coinciding
with MSI and OLCI overpasses, whereby its sensitivity to uncertainties
in Rrs is inferred for practical applications. This is followed by a dis-
cussion of the implications for cross-mission consistency for reliable
monitoring of inland and nearshore coastal waters.

2. Development data

For this study, in situ radiometric and biogeochemical data origi-
nating from several regions whose optical regimes span a broad range
of trophic states were compiled. The geographic distribution of the sites
is provided in Fig. 1. These aquatic ecosystems, including rivers, bays,
lakes, reservoirs, lagoons, and coastal estuaries, are influenced by
various human-induced activities (e.g. application of fertilizers for
agricultural purposes in watersheds of Wisconsin lakes) and climate-
change-related pressure (e.g., flash floods in Vietnam). Some of the
lakes (e.g., Lake Taihu; (Duan et al., 2009)) are well-known for their
long history of harmful algal blooms (HABs), whereas some others are
relatively deep, clear waters (e.g., Lake Taupo, New Zealand). The di-
versity in their biogeochemical characteristics (see distributions in
Fig. 2), representing various land-use and utilities, provides an un-
precedented opportunity for algorithm developments and validations,
likely establishing a pathway towards generating improved global Chla
products. Typical biogeochemical properties for a handful of sites
identified based on their regions or countries are summarized in
Table 1.

2.1. Radiometry

The radiometric quantity used in this research is Rrs computed as

= + +R L E(0 )/ (0 )rs w d (1)

where Lw and Ed are the water-leaving radiance and total downwelling
irradiance evaluated just above the water, respectively. The wave-
length-dependency has been dropped for brevity. Overall, four different
measurement methods were followed for in situ measurements of Rrs. A

portion of data was obtained using sequential measurements of the
water surface, sky, and plaque radiances by a single handheld radio-
meter (ASD FieldSpec®) following the ocean optics protocol (Matsushita
et al., 2015; Mueller et al., 2003). Some measurements were made via a
pair of intercalibrated (Ocean Optics® or RMSES®) spectrometers with
one measuring subsurface upwelling radiance and the other measuring
total downwelling irradiance above the surface (e.g., Nebraska Lakes
and Reservoirs) (Gitelson et al., 2009). In deeper coastal waters (e.g.,
Chesapeake Bay), the free-fall profiling technique (Mueller et al., 2003)
was adopted. Further, a fraction of data (e.g., New Zealand lakes) was
collected using the sky-block approach which allows direct measure-
ments of Lw(0+) using a cone to avoid unwanted surface-reflected ra-
diances (Lee et al., 2013). HyperOCR® radiometers were used to collect
data with the free-fall profiling and sky-block techniques. A data-
quality screening was carried out to exclude outliers identified through
visual inspections of Rrs data exhibiting abnormal spectral features,
highly inconsistent with known spectral properties of constituents
measured in the water. The discarded data amounted to only a small
fraction (<1%) of the initial database, which was not surprising be-
cause the data had undergone preliminary quality screening by the data
providers. The radiometric data were provided at various spectral re-
solutions (between 1 and 3.3 nm) mostly within the 350–900 nm range.
The hyperspectral data were then convolved with the relative spectral
responses of MSI (Drusch et al., 2012; Pahlevan et al., 2017b) and OLCI
(Donlon et al., 2012) to simulate band-equivalent Rrs for algorithm
training and testing.

2.2. Chlorophyll-a

As indicated in Table 1, our dataset represents a wide array of
biogeochemical properties originating from various geographic regions
(Fig. 1). At each station a set of water quality parameters was measured
from surface water samples collected at a depth of 0.5 m below the
surface and stored refrigerated in the dark. These surface samples were
filtered on the day of collection on filter pads (e.g., Gelman A/E and
Whatman GF/F) and frozen for laboratory analyses.

Chlorophyll-a was then extracted from the water samples using
100% methanol, 96–99.5–100% ethanol (Jeffrey and Humphrey,
1975), or 90–99.5% acetone, and then its concentration was measured
fluorometrically (Welschmeyer, 1994) or spectrophotometrically

Fig. 1. Spatial distribution of the sites where development data, i.e., water quality data and radiometric measurements, were acquired. Our database encompasses a
fairly extensive set of bio-optical and bio-geochemical conditions in rivers, bays, lakes, reservoirs, lagoons, and coastal estuaries.
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(Buschmann et al., 2000; Holm-Hansen and Riemann, 1978). Since
some of the Chlameasurements were not corrected for pheophytin and/
or other pigments' contribution, using ~1316 corrected-uncorrected
pairs available through the Great Lakes dataset, we identified a fourth-
order polynomial (R2= 0.96) that best fit the data. This is regarded as a
first-order correction applied to the uncorrected Chla to diminish im-
pacts of pheophytin and/or other pigments.

In addition to Chla, other water quality indicators, such as near-
surface concentration of total suspended solids (TSS), and aCDOM, Secchi
disk depth, and turbidity were also measured. Fig. 2 illustrates the
frequency distribution of co-located TSS and aCDOM measurements
along with Chla. The Chla histogram follows a log-normal distribution,
with a mean and standard deviation of 21.7 and 47.5mg/m3, respec-
tively, indicating a wide range of water conditions, including oligo-
trophic lakes (Chla<4mg/m3), moderately eutrophic coastal waters,
and hypereutrophic lakes (Chla ~1209mg/m3). Note, however, that
only 5% of data (~150) is representative of hypereutrophic waters
(90<Chla<1209mg/m3). The variability in co-located aCDOM and
TSS measurements further affirms the semi-global representativeness of
this dataset, comprising ecosystems with moderately clear, moderately
eutrophic waters, and organic−/sediment-rich waters. Of the entire set
of Rrs – Chla pairs, about 90% were accompanied by TSS measurements

and approximately one-third came with aCDOM measurements (Fig. 2).

3. Methodology

3.1. Model development

In remote sensing of water quality, retrieving a water quality
parameter like Chla from an Rrs spectrum is often an ill-posed problem,
i.e., multiple Chla values may correspond to a single Rrs spectrum
(Defoin-Platel and Chami, 2007; Sydor et al., 2004; Yang et al., 2011).
This is because Chla is only one of several optically active components
contributing to the Rrs spectrum, whose spectral features might overlap
with those of Chla (e.g., Chla absorption in the blue region overlaps
with that of CDOM). As a result, various combinations of constituent
concentrations and bio-optical conditions can correspond to a single Rrs

spectrum, giving rise to the problem of non-uniqueness of the solution.
The Mixture Density Network (MDN) utilized here is able to overcome
this non-uniqueness problem to a great extent.

3.1.1. Mixture density networks
MDNs are a class of neural networks whose outputs parameterize a

mixture of Gaussians (Bishop, 1994). In understanding MDNs, it is

Fig. 2. Log distribution of all available Chla, TSS, and aCDOM(440) included in our database. The median and mean values for this triplet of water quality parameters
are (8.9, 21.7) mg/m3, (9.6, 34.7) g/m3, and (1.2, 2.8) 1/m, respectively.

Table 1
Median and standard deviation (Std) of biogeochemical properties, i.e., Chla, aCDOM, and near-surface concentration of total suspended solids (TSS), for select sites.
Seasons refer to northern meteorological seasons.

Region
(years)
(samples)

Lake/bay/estuary Season Chla (mg/m3) aCDOM(440)
(1/m)

TSS
(g/m3)

Reference

Median Std Median Std Median Std

Midwest U.S. Lakes
(2008–2016)
(N=392)

Nebraska (NE) lakes and reservoirs Spring 10.2 37.1 0.72 0.23 3.56 3.50 (Gurlin et al., 2011)
Summer 27.5 46.1 0.74 0.21 8.00 10.1
Fall 40.8 43.8 0.72 0.24 8.67 9.80

Wisconsin (WI) lakes and flowages Spring 3.90 4.2 0.49 0.26 4.25 3.18 Unpublished
Summer 8.79 120 0.70 2.43 4.40 16.1
Fall 25.1 29.4 1.15 1.63 6.10 8.47

Estonia
(2015–2018)
(N=193)

Lake Peipsi, Lake Võrtsjärv, small lakes Spring 15.14 10.9 3.27 9.29 4.67 4.43 (Ansper and Alikas, 2019)
Summer 13.18 14.4 2.14 4.70 7.64 5.74
Fall 20.53 17.3 1.66 1.69 8.25 5.62

Germany
(2015–2017)
(N=22)

Lake Kummerow Spring 8.9 3.7 1.32 1.13 – – (Dörnhöfer et al., 2018)
Summer 14.4 5.6 1.28 0.12 1.7 2.7
Fall 12.3 5.5 0.94 0.03 3.0 1.5

U.S. East Coast
(2002–2015)
(N=767)

Chesapeake and Delaware Bays Summer 29.4 86.9 0.62 0.07 10.7 27.4 (Gitelson et al., 2007; Schalles, 2006)
Carolina Summer 15.8 14.3 3.8 5.5 36.8 26.5
Georgia Summer 12.8 12.3 1.04 3.0 21.5 25.3
Florida coasts Summer 41.9 30.3 1.14 0.22 14.9 7.9
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helpful to first clarify the problem they seek to solve. Standard machine
learning approaches can be regarded as function approximators; they
attempt to find a function f(x)= y such that an error metric (e.g., the
root mean squared error; RMSE), gauged against some dataset D⊂ R, is
minimized. This desired function has a restriction (Schmidt, 2011):

=x y D x y D y y( , ) ( , ) (2)

That is, the function must be right-unique within the dataset,
guaranteeing there is at most a single value of y for any x. The problem
with this requirement arises when we wish to find the inverse function,
x= f−1(y). In this situation, we can no longer guarantee a unique
mapping: if there were many x values mapped to the same y value, the
situation will now be reversed, i.e., multiple values of x being mapped
to a single value of y.

Instead of directly estimating the target variable, MDN produces
three statistical measures of the variable, namely, a mean vector (μ), a
covariance matrix (Σ), and a mixing coefficient (α) for each Gaussian
modeled. MDNs are designed to solve the issue of a many-to-one inverse
problems by modeling a conditional probability distribution over the
range of the target variable(s) (Sydor et al., 2004; Yang et al., 2011).
Recall that the goal of a machine learning model is to fit a function of
the form:

f X R Y R: n m

With c as the number of Gaussians modeled, the number of outputs
of the network is then equal

to + + +( )c m1 m m( 1)
2 : a single mixing coefficient, m means,

and +m m( 1)
2

outputs, which define the lower triangle of covariance
matrix. The learned probability density is then defined as:

=
=

p y x x y x( | ) ( ) ( | )
i

c
i i1 (3)

where ϕi is a normal distribution with μ, Σ as the mean vector and the
covariance matrix. A valid Gaussian mixture of this form, however,
requires that the output variables adhere to the following constraints:
the mixing coefficients, αi, must add to 1; and the covariance matrix Σ
must be positive, definite, and regularized for small ϵ. The Gaussians
are combined to form the final output estimation via maximum like-
lihood, which represents the estimate in the area of highest probability
mass:

= =y µ x i argmax x( ): ( )i (4)

3.1.2. Input and output
A total of 1000 randomly chosen pairs of Rrs – Chla were supplied

for training the model, leaving out the rest of the data for testing.
Following several experiments on the size of the training subset, we
found that increasing the proportion of training data versus the testing
data introduces insignificant changes in the model performance; hence,
approximately only one-third (n= 1000) of the development data was
used for training, leaving out adequate test samples for categorical as-
sessments of the performances (e.g., Table 3). Input to the model con-
sists solely of MSI- and OLCI-simulated Rrs within the 400–800 nm
range. This data includes seven MSI and 12 OLCI bands. OLCI's 400-nm
band is excluded due to inadequate numbers of radiometric spectra
with measurements <400 nm. This strategy prevents a major reduction
in the size of the training/validation dataset. Also, OLCI's three oxygen
bands in the proximity of 760-nm were not considered due to other
applications foreseen for these bands (Mei et al., 2017; Preusker and
Lindstrot, 2009). All features are log-transformed, normalized based on
median centering and interquartile scaling, and then scaled to the range
(0,1); output variables are subject to the same normalization method.
This procedure is robust to outliers which may be present in the data,
while also enforcing a homogeneous scale and distribution across fea-
tures. The final range scaling ensures all feature information is con-
tained within the valid domain for the rectified linear unit (ReLU)

activation functions (Agarap, 2018). The output of the model in this
paper consists of the single variable, Chla; thus, reducing covariance
matrices (Σ) to standard deviations (σ). This is a practical necessity
rather than a theoretical one. That is, modeling multiple output vari-
ables should improve overall estimates, but would require co-located
measurements of all variables, such as Chla, TSS, and IOPs, for all
training samples. In spite of using solely Chla as the output, however,
an MDN still learns to distinguish different distributions conditioned
upon the input Rrs, which leads to improvement over standard models.
Fig. 3 illustrates a schematic block diagram of our developed MDN
model.

3.1.3. Hyperparameters
There are a number of hyperparameters to tune, including the

number of Gaussian distributions which are modeled, as well as all
standard neural network hyperparameters (e.g. regularization and
learning rates, network size and depth, etc.). These choices appear to be
fairly robust to changes within the current implementation, especially
with regard to the MDN-specific parameters. Following experimenting
with several architectures, we found that the model is very robust to
changes in various hyperparameters. The Chla performance retrievals,
for instance, varied only <1% for the following scenarios: a) a two-
layer network with 20 neurons in each and 2 mixture functions versus
b) a 10-layer network each having 200 neurons with 10 mixture
functions. For practical matters, therefore, we chose to use a five-layer
neural network with 100 neurons per layer, which is trained to output
the parameters of five Gaussians. From this model, the overall estimate
is selected via the Gaussian with the maximum likelihood. The median
estimates from the MDN model taken over ten trials of random network
initializations are the predicted Chla for a given Rrs spectrum. Here, the
same training data are used for all trials.

3.2. Comparison with state-of-the-art algorithms

To evaluate the performance of MDN using simulated MSI and OLCI
in situ radiometric data, the precision and accuracy in Chla retrievals is
compared with those from select state-of-the-art algorithms (Hu et al.,
2012; Mishra and Mishra, 2012; Moses et al., 2009b; Moses et al., 2012;
O'Reilly et al., 1998; O'Reilly and Werdell, 2019; Smith et al., 2018).
The algorithms examined are relevant OC algorithms, 2-Band, 3-Band,
and the Normalized Difference Chla Index (NDCI) (see Appendix A).
Our preliminary analyses indicated that OC, i.e., OC3 and OC4, and
Blend outperform other existing algorithms and allow for retrievals
over a comparable range of Chla. Hence, for conciseness, we primarily
focus on these two algorithms as benchmarks. In addition to the global
statistical analysis, to gain insights into the utility of MDN in various
eutrophic conditions, a stratified analysis defined according to the
trophic state indices (TSI) (Carlson, 1977) was carried out. For the
implementation of various algorithms, in situ Rrs(λ) are resampled with
the relative spectral response functions of MSI and OLCI and then
supplied to the target algorithms. The exception was the OC algorithms
for which Rrs(λ) are resampled with 11-nm square bands positioned at
the band centers to ensure consistency with the original developments
of the algorithms, i.e., the fourth-order polynomial coefficients are
derived for 11-nm square spectral bands (O'Reilly et al., 1998; O'Reilly
and Werdell, 2019).

3.3. Atmospheric correction

The impacts of atmospheric correction (AC) on MDN and select
existing algorithms are tested to better understand how uncertainties in
AC propagate to Chla products. In doing so, three AC methods, namely
the SeaWiFS Data Analysis System (SeaDAS), POLYMER, and ACOLITE,
whose utility for processing MSI and OLCI have been demonstrated
(Mograne et al., 2019; Pahlevan et al., 2019; Warren et al., 2019), are
utilized. For this exercise, we investigate image data from both MSI-A
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and MSI-B; nevertheless, only OLCI-A data are evaluated due to in-
adequate matchups for OLCI-B. For brevity, we continue to refer to
them as MSI and OLCI, unless otherwise noted.

SeaDAS estimates aerosol loading and their optical properties using

a band ratio of Rayleigh-corrected reflectance computed using two NIR
bands or one NIR and one shortwave infrared (SWIR) band (NIR-SWIR)
(Gordon and Wang, 1994). The estimated aerosol contribution in the
NIR and/or in the NIR-SWIR bands are then extrapolated to the visible

Fig. 3. Schematic block diagram illustrating the main components of a Mixture Density Network (MDN), a class of neural networks that estimates multivariate
probability density functions with their corresponding parameters (μ, Σ) and mixing coefficients (α) to arrive at an optimal Chla retrieval. Note that a covariance
matrix (Σ) is reduced down to standard deviation (σ) when a single target variable (e.g., Chla) is sought.

Fig. 4. Stacked bar charts demonstrating the distribution of valid in situ Chla matchups identified under MSI-A/B and OLCI-A overpasses in a few select sites across
North America. The data mostly come from the Chesapeake Bay due to a continuous data collection scheme. The AC processors have different exclusion criteria
resulting in different number of valid matchups. The Other Lakes refer to the Great Lakes (other than Lake Huron) and Simcoe Lake. For MSI, >85% data are from the
Chesapeake Bay autonomous buoy data.
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bands and subtracted from the Rayleigh-corrected signal. In this study,
the band combinations of 865–1613 nm for MSI (Pahlevan et al.,
2017b) and 779–865 nm for OLCI are applied for the removal of aerosol
contribution (SeaDAS v7.5). Note that for the MSI processing, a 5 × 5
median filter was applied to Rayleigh-corrected radiances prior to Rrs
retrievals (Pahlevan et al., 2017b), whereas no spatial smoothing filter
was applied to OLCI data, assuming an adequate radiometric perfor-
mance at its 300-m ground sample distance (Donlon et al., 2012). The
vicarious calibration gains for both MSI (Pahlevan et al., 2019) and
OLCI (ESA and EUMETSAT, 2019) were implemented, however. We
also excluded pixels that did not pass through the standard Level-2
flags, i.e., land, high/saturated radiance, stray light, and cloud/ice.

POLYMER (Steinmetz et al., 2011) is a spectral matching algorithm
that finds the best fit to an observed TOA reflectance among a col-
lection of modeled signals with contributions from aerosol and mo-
lecular scattering, any glitter signal (e.g., surface glint or enhanced
signal arising from haze), and Rrs. Three polynomial coefficients are
used to describe the aerosol scattering and glitter and two are used to
vary Rrs as a function of Chla and particulate backscattering coeffi-
cient. POLYMER has been shown (Frouin et al., 2012) to work well in
areas impacted by glint and/or where adjacency effects may be pre-
sent (Bulgarelli et al., 2014; Santer and Schmechtig, 2000). Using an
extensive radiometric dataset collected in the Baltic Sea and the
Western English Channel, as well as a few lakes, Warren et al. (2019)
has recently identified POLYMER as an optimal atmospheric correc-
tion method for optically complex waters. Here, we will utilize
POLYMER (v4.11), which includes all the default exclusion criteria
but does not incorporate any vicarious calibration gains. The output
radiometric products were scaled by π for consistency in units
(1/sr).

ACOLITE, whose performance for Landsat-8 imagery has shown
promise in highly turbid waters (Vanhellemont and Ruddick, 2014),
was also applied to MSI images only. The current version of ACOLITE
(20190326.0), nevertheless, applies a dark spectrum fitting (DSF)
scheme as the default setting (Vanhellemont, 2019), which was used in
this experiment. The DSF assumes a) a homogeneous atmosphere over a
certain extent of an image and b) that there are pixels within this
subscene that contain near-zero water-leaving radiances in one band.
Similar to the scheme implemented in SeaDAS or land-based atmo-
spheric correction methods (Vermote et al., 2016), a pre-generated
look-up-table is utilized to find dominant aerosol conditions. The cor-
responding Rrs products were output and passed to the Chla retrieval
algorithms.

MSI- and OLCI-derived Rrs produced via these processors are then
supplied to MDN, OC, and Blend to generate Chla products. The pro-
ducts are evaluated using in situ Chla matchups identified under
Sentinel-2A/B and Sentinel-3A overpasses in the Chesapeake Bay, the
Upper Klamath Lake (OR), the Great Lakes, as well as Lake Winnipeg
and Lake Simcoe in Canada. These data (Fig. 4) are acquired through
routine state and/or federal monitoring activities through either field
visits and laboratory analyses, i.e., lake data; https://www.canada.ca/
en/environment-climate-change/services/freshwater-quality-
monitoring/online-data.html, or autonomous, on-site fluorometric
measurements available via multiple buoys in the Chesapeake Bay
maintained and operated by the National Oceanic and Atmospheric
Administration (NOAA), i.e., https://buoybay.noaa.gov. The lake data
are mostly provided by the Environment and Climate Change Canada
(ECCC) and the Upper Klamath Lake data were obtained from the Water
Quality Portal (WQP; https://www.waterqualitydata.us). The rea-
soning behind the choice of these datasets was their easy access and
coverage of a wide range of trophic conditions. We used near-surface
measurements in all sites except those made in the Great Lakes, where
depth-integrated Chla values were made available by ECCC. Further,
using the method briefly described in Section 2.2, the available
fluorometric data were partially corrected for other pigments. Valid
matchups were selected according to certain spatial and temporal

constraints. The spatial analysis was carried out within 3 × 3 – element
windows centered around the matchup location. The matchup was
considered valid if ≥5 pixels are labeled with valid Chla values; hence,
nearshore matchups are discarded. The median value is computed to
represent image-derived Chla (Werdell and Bailey, 2005). For the
Chesapeake matchups, data available within ±30min of satellite
overpasses were utilized, whereas a wider time span (±3 h) was
adopted for lake matchups (Werdell and Bailey, 2005). Fig. 4 shows
frequency distributions of valid matchups corresponding to each pro-
cessor. To enable a fair performance intercomparison, we further
identified common satellite matchups for the processors yielding equal
number of samples.

3.4. Performance indicators

Here, we examine both linear and log-transformed metrics for
evaluations of estimated (E) Chla against that measured (M) in situ. The
evaluation of all Chla algorithms is carried out using an in situ valida-
tion set (n>1900) independent of the training set (n=1000). The
performance metrics are as follows
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where RMSLE is the root mean squared log-error, MAPE is the median
absolute percentage error, Bias represents log-transformed residuals,
and MAE stands for the mean absolute error computed in log-space. The
latter (unitless) metrics computed in log-transformed space are believed
to provide a better assessment of the algorithms owing to the log-
normal distribution of Chla data (Fig. 2) (O'Reilly and Werdell, 2019;
Seegers et al., 2018). For instance, a Bias of 1.5 implies that Chla es-
timations are, on average, 50% larger than those measured. In addition
to the above metrics, we will also include slopes associated with the
linear regression fits to facilitate comparisons with previously pub-
lished results. Per recommendations in Seegers et al. (2018), we also
conduct pair-wise comparisons to determine the Model Win Rate
(MWR) expressed in %. Here, the residuals, i.e., Ei−Mi, per compar-
ison (i) are assessed and % win across the entire validation set (n) is
specified.

4. Results

4.1. Performance evaluation

The performance statistics on Chla derived for simulated in situ Rrs

shows that the MDN model outperforms Blend and OC for both MSI and
OLCI spectral configurations (Fig. 5 and Table 2). For instance, RMSLE
and Bias are improved nearly two-fold and by 20–40%, respectively.
Also, MAPE suggests that MDN outperforms both OC and Blend over
two-fold.

The scatterplots (Fig. 5) further indicate that OC3 and Blend lead to
major overestimations for Chla<10 mg/m3 and tend to underestimate
in more eutrophic waters. Furthermore, the slope of the linear
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regression fit to the log-transformed predicted versus observed Chla
relationships is closer to unity for the MDN model (>0.84) compared
with the other models. This indicates the best fit across the entire
concentration range. More statistical metrics are listed in Table 2. The
MWR, in particular, suggests that in >70% of retrievals, MDN performs
better than OC3 and Blend. The log-based absolute error (MAE) also
indicates similar levels of improvements by MDN, i.e., ~28% less than
that evaluated via Blend. The negligible Bias found for MDN-derived
predictions further emphasizes significant increased accuracy in Chla
retrievals within a range covering three orders of magnitude. Note that
the uneven validation sample size (1943 for MSI versus 1905 for OLCI)

was due to a lack of full spectral coverage within the 400–800 nm range
for a small subset of data (n=38).

It is also important to underscore the relative performances of MDN
for the spectral configurations of the two sensors. Evident from the
statistical metrics tabulated in Table 2, it is inferred that the MDN
model is able to generate Chla products for MSI- and OLCI-like spectra
with very similar precision and accuracy. This implies that MDN suf-
ficiently retrieves most relevant information content associated with
Chla from the seven visible-NIR bands of MSI. In contrast, OC and Blend
exhibit varying degrees of performances for simulated MSI and OLCI Rrs
spectra.

The statistics tabulated in Table 3 for OLCI-simulated data further
corroborate that the MDN model enhances Chla retrievals across nearly
all trophic states (Table 3). In particular, MDN significantly outper-
forms the other algorithms in waters with TSI ≤ 70 (i.e., Chla ≤
56mg/m3). In higher trophic states (TSI > 80), for which only 32 test
samples are available, Blend and MDN appear to perform very similarly
(Appendix A), suggesting that a larger sample size is required for a more
rigorous assessment. Based on the estimated Bias in highly eutrophic
waters (TSI ≥ 70), it is worthwhile noting that the three algorithms
tend to underestimate Chla suggesting the need for further improve-
ments. Due to the similarities in the performances, corresponding MSI
results are included only in the Appendix A (Table A.1). To gauge the
performances for two broad categories of inland freshwaters and mixed
coastal waters, we divided our validation dataset (of OLCI) into two
groups, i.e., N=1054 and N=851 for inland and coastal waters, re-
spectively. It was inferred that, on average, the performance of MDN is
only marginally different for the two groups with RMSLE and slope

Fig. 5. Performance evaluation of Chla retrievals using MDN, Blend and OC implemented for MSI- and OLCI-simulated in situ Rrs (Section 2). The contour plots
indicate the density distributions. Further details on the overall and range-specific performances are included in Tables 2 and 3, respectively. A broader performance
evaluation is available in Appendix A.

Table 2
Performance metrics associated with Chla retrievals via MDN, OC, and Blend
using >1900 co-located and coincident in situ Rrs – Chla data pairs. Note that
the Model Win Rate (MWR) is computed relative to MDN regarded as the re-
ference model.

RMSE
(mg/m3)

Slope MAPE
(%)

RMLSE Bias MAE MWR
(%)

MSI (n= 1943)
MDN 30.31 0.876 24.0 0.616 0.995 1.275 N/A
OC3 43.25 0.484 74.5 1.276 1.419 2.137 81.7
Blend 40.77 0.585 62.1 1.199 1.550 1.757 76.5

OLCI (n= 1905)
MDN 26.98 0.865 22.9 0.581 1.003 1.265 N/A
OC4 3364.6 0.581 81.0 1.309 1.645 2.221 82.7
Blend 31.66 0.624 69.3 1.351 1.640 1.867 77.1
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being 15% worse in inland waters.
A more extensive intercomparison with other widely used algo-

rithms (e.g., 3-Band method in Moses et al. (2012)) is provided in the
Appendix A (Table A.2). In general, except for MDN, no single algo-
rithm offers a reasonable performance across the entire Chla range. In
particular, the 2-Band and 3-Band algorithms yield negative retrievals
for a small portion of data with low Chla, whereas NDCI (Mishra and
Mishra, 2012) performs poorly for Chla<15mg/m3 and under-
estimates Chla in more eutrophic waters. Negative retrievals obtained
from these algorithms are expected as they are designed to operate in
highly eutrophic waters by design.

4.2. Spatial integrity

To determine the viability of the MDN model for producing Chla
maps conforming to expert expectations, several OLCI and MSI images
over three select regions in the U.S., including the Great Lakes, the
lower Chesapeake Bay, and Lake Okeechobee (FL) were processed. The
images representing a broad range of Chla values were compensated for
atmospheric effects using SeaDAS, POLYMER, and ACOLITE. For de-
monstration purposes, we only present visual intercomparisons of a
handful of Chla maps retrieved via POLYMER-derived Rrs products due
to its proven performance demonstrated in Warren et al. (2019).

Fig. 6 illustrates OLCI- and MSI-derived Chla products over the
Great Lakes on April 30th, 2018 generated from near-simultaneous
observations made by Sentinel-3A and Sentinel-2B. From the OLCI map,
it is inferred that MDN produces realistic maps across a wide range of
trophic levels, from oligotrophic waters of Lake Huron (Shuchman
et al., 2013) to hypereutrophic waters of Lake Winnebago (Gons et al.,
2008). Although cross-mission product consistency requires long-term,
rigorous analyses of products, the MDN model shows promise in gen-
erating interconsistent Chla products. Fig. 7 further compares Chla
products over the lower Chesapeake Bay area (March 27th, 2019),
where spring blooms commonly occur (Marshall et al., 2006). Histori-
cally, seasonal algal blooms (e.g., dinoflagellate Prorocentrum minimum)
have been recorded in the lower York River, the James River, and at
their mouths (Marshall, 1994; Marshall, 1996). It is inferred that the
MDN model successfully produces Chla products ranging from 4 to 50
mg/m3. Major differences between MDN- and Blend-derived products
are indicated in the maps, where larger gradients are identified in MDN
products in the James River. Given the superior performance of MDN
within the Chla<10 mg/m3 range (Fig. 5), MDN is expected to capture
such abrupt changes.

Additionally, we examine the performances for another MSI image
(June 5th, 2019) over Lake Okeechobee (FL) in Fig. 8. This shallow
lake, rich in near-surface sediment concentrations, has lately

Table 3
Stratified performance assessment of MDN, OC4 (O'Reilly and Werdell, 2019), and Blend (Smith et al., 2018)
for the OLCI-simulated data in TSI bins. The MDN model offers excellent enhancements in mesotrophic and
eutrophic waters. The improvement is relatively small in comparison to Blend in hypereutrophic waters. For
MWR computation, the win rate for each model is compared against MDN, i.e., OC4=78% implies that MDN
leads to smaller residuals 78% of the times.

OLCI RMSE 
(mg/m3)

Slope MAPE 
(%)

RMSLE Bias MAE MWR
(%)

TSI ≤30
Chla ≤ 0.94 

(n=185)
Median = 0.54 (mg/m3)

MDN 1.47 0.76 29.3 0.64 1.22 1.29 NA

OC4 5.77 1.30 119.5 1.38 2.19 2.19 80.7

Blend 8.79 0.98 147.6 1.73 2.47 2.60 86.1

30 < TSI ≤ 40
0.94 < Chla ≤ 2.6 (n=287)

Median = 1.7 (mg/m3)

MDN 4.13 1.09 29.5 0.75 1.15 1.37 NA

OC4 25.78 0.71 262.3 1.79 3.62 3.65 91.0

Blend 19.34 0.89 296.9 1.88 3.96 4.00 92.0

40 < TSI ≤ 50
2.6 < Chla ≤ 6.4 

(n=325)
Median = 4.3 (mg/m3)

MDN 13.10 0.92 27.4 0.64 1.11 1.30 NA

OC4 25.11 0.43 138.1 1.31 2.38 2.45 87.1

Blend 26.03 0.16 173.7 1.90 2.73 2.74 88.2

50 < TSI ≤ 60
6.4 < Chla ≤ 20 

(n=559)
Median = 11.9 (mg/m3)

MDN 7.40 0.85 18.7 0.40 0.97 1.20 NA

OC4 34.92 0.19 52.0 0.86 1.22 1.74 76.6

Blend 19.13 0.33 51.7 0.78 1.40 1.63 75.9

60 < TSI ≤ 70
20 < Chla ≤ 56 

(n=364)
Median = 29.2 (mg/m3)

MDN 12.80 1.11 19.5 0.43 0.87 1.21 NA

OC4 488.23 1.10 54.9 0.99 0.77 1.89 78.9

Blend 15.77 0.95 24.8 0.44 1.01 1.29 56.6

70 < TSI ≤ 80
56 < Chla ≤ 154 

(n= 153)
Median = 88.2 (mg/m3)

MDN 38.29 0.72 23.0 0.65 0.80 1.26 NA

OC4 13665.06 1.45 76.4 1.80 0.33 3.50 89.6

Blend 43.10 0.82 29.1 0.62 0.75 1.40 57.4

TSI > 80
Chla > 154 

(n=32)
Median = 196 (mg/m3)

MDN 202.40 0.43 44.4 1.02 0.55 1.79 NA

OC4 526.26 0.22 94.0 2.34 0.15 8.33 88.5

Blend 199.80 0.67 54.4 1.19 0.62 1.64 61.5
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experienced seasonal cyanobacteria blooms from early May to late
September (Metcalf et al., 2018; Williams et al., 2001). The three al-
gorithms capture the spatial variability of the cyanobacteria bloom
across the lake and provide similar Chla retrievals (Chla<1.5mg/m3)
on the eastern coasts of Florida. An in situ measurement, made ap-
proximately 1 h after a Sentinel-2 overpass at the marked location, has
reported Chla=10.1mg/m3, which is closely estimated by MDN and
OC3, i.e., 12.9 and 10.9mg/m3, respectively, and overestimated by
Blend by 80%.

4.3. Impact of atmospheric correction

It is essential to assess the sensitivity of the MDN model to different
AC processors and gain further insights into how uncertainties in this
process propagate to Chla products. Fig. 9 illustrates MDN-derived Chla
for a single example of an MSI image over the lower Chesapeake Bay
processed via SeaDAS (v7.5), POLYMER (v4.11), and ACOLITE
(20190326.0). Despite the fact that the relative spatial distributions of
MDN-derived Chla are, in general, retained through the three pro-
cessors, there are clearly differences in the magnitude of Chla. For

Fig. 6. OLCI- and MSI-derived Chla products over the Great Lakes and the western basin of Lake Erie for near-coincident overpasses of Sentinel-3A and Sentinel-2B on
April 30th, 2018.

Fig. 7. MSI-derived Chla products estimated via MDN, Blend, and OC3 algorithms over the lower Chesapeake Bay (VA), March 27th, 2019. The TOA MSI image was
processed to Rrs using POLYMER.
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example, the SeaDAS-processed map shows lower Chla values than the
others. Moreover, ACOLITE allows retrievals in a hypereutrophic reach
of the York River, where both SeaDAS and POLYMER fail to retrieve
valid products. While valid retrievals do not necessarily warrant viable
Rrs products (as elaborated below), distinct products from the three
processors for this example with a low aerosol loading, i.e., daily
averaged aerosol optical thickness of 0.047 at 500 nm measured at
NASA's Langley Research Center of the Aerosol Robotic Network;
(Holben et al., 1998), verify the challenging task of AC and its effects on
downstream products.

To further elucidate the reason for such differences, we quantify the
quality of satellite-derived map products processed via SeaDAS,
POLYMER, and ACOLITE. Fig. 10 illustrates the MSI matchup results.
As denoted in Section 3.3, due to different quality-assurance schemes,
different numbers of valid matchups are obtained for the AC processors.
The assessments based on identical numbers of matchups are also
shown in Fig. 12. From Fig. 10, it is evident that the excellent perfor-
mance of MDN (Section 4.1) is majorly affected by the AC, leading to
varying degrees of biases or random noise. Nevertheless, statistically,
the MDN model outputs Chla values that better represent in situ mea-
surements. The MDN-derived values processed through POLYMER
better resemble those processed via SeaDAS, albeit POLYMER appears
to retrieve Chla under more challenging atmospheric conditions, i.e.,
POLYMER has produced ~70% more valid matchups, and thus, exhibits
more noisy retrievals. ACOLITE-based Chla values, on the other hand,
demonstrate major biases (overestimation) across the entire range,
which aligns with maps shown in Fig. 9. Predicted Chla by OC3 and
Blend are found consistently biased high for the three processors, which

could be attributed to the sensitivity of the OC algorithms to the pre-
sence of non-algal particles or CDOM in the Chesapeake Bay (Tzortziou
et al., 2007). Further, it is also evident that the OC3– and Blend-derived
Chla products when SeaDAS-generated Rrs products are supplied are
highly scattered. This is because of the noisy observations in the NIR
and SWIR bands (Section 3.2) that affect Rrs products in the visible or
other NIR bands (Pahlevan et al., 2017b). Overall, although the
matchup datasets are not as representative as the development data
(Section 2), the performance (Fig. 10) within the 1<Chla<10mg/m3

range is in agreement with those illustrated in Fig. 5, i.e., both OC3 and
Blend tend to overestimate within this range. Further, OC3 and Blend
models seem to output more reasonable retrievals when applied to
POLYMER-based data compared to those derived from SeaDAS, al-
though MDN is found to significantly outperform these algorithms.

The results for the OLCI-A-derived Chlamatchup analysis are shown
in Fig. 11. Despite the differences in the number of matchups, similar
conclusions as for MSI can be drawn for OLCI-A. That is, SeaDAS-based
band-ratio products are slightly more scattered than those produced via
MDN, and all the three Chla algorithms show varying levels of over-
estimations. This overestimation is ~36% in the MDN-derived Chla
produced by POLYMER; however, OC3 and Blend products exhibit
much higher biases in retrievals. Analogous to the MSI assessments,
these observations are in line with the validation results (Fig. 5), i.e.,
OC4 (O'Reilly and Werdell, 2019), and Blend primarily predict higher
Chla values within the 1<Chla <10mg/m3 range for which the
Chesapeake Bay data are most representative. Overall, the statistics and
the scatterplots suggest that POLYMER-derived Rrs allows for more Chla
predictions when MDN is utilized. Fig. 12 illustrates the common Chla

Fig. 8. MSI-derived Chla products over Lake Okeechobee (June 5th, 2019). The POLYMER processor was adopted to generate Rrs products. Near-concurrent in situ
Chla measurement at the location indicated is reported 10.1mg/m3 (https://www.waterqualitydata.us).

Fig. 9. MDN-derived Chla products obtained from three different AC processors over the lower Chesapeake Bay as imaged by MSI on March 27th, 2019. The mean
daily aerosol optical thickness at 500 nm at the marked location (middle panel) was estimated to be 0.047. The measurement was made at NASA's Langley Research
Center, a station that belongs to the AErosol RObotic NETwork (AERONET) (Holben et al., 1998).
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matchup products (produced via MDN only) for each sensor (281 for
MSI-A/B and 219 for OLCI-A).

Although scatterplots suggest similar performances for SeaDAS and
POLYMER, similar to Figs. 10 and 11, POLYMER, on average, provides
products with lower uncertainties as evidenced by all the error metrics,
i.e., 10–30% improvements relative to other processors. ACOLITE, on
the other hand, appears to output biased high Chla products. The
reason behind such biases may be explained by inspecting Fig. A.1
(Appendix), where normalized frequency distributions of select bands
(Rrs(490), Rrs(560), and Rrs(705)) that contribute most to Chla re-
trievals are illustrated. For MSI, it can be seen that the ACOLITE Rrs

retrievals are largest across the visible and NIR bands, whereas SeaDAS-
derived Rrs in the blue and green bands skewed towards lower values. In
general, elevated retrievals of Rrs(709) (Gitelson et al., 2007) or

underestimations in Rrs(490) and Rrs(560) can both lead to over-
predictions of Chla (Stumpf and Tyler, 1988). For OLCI, notable dif-
ferences between SeaDAS and POLYMER are found only in Rrs(490).
These observations for SeaDAS products likely imply errors in the ex-
trapolation into the blue region of the spectrum or a limited re-
presentativeness of aerosol models applied (Pahlevan et al., 2017a).

Fig. 13 further shows a few instances of Blend- and OC3-derived
products that lack consistency in their spatial patterns when processed
via POLYMER and SeaDAS. The main artifact highlighted corresponds
to the sudden change in MSI's viewing azimuth angle between adjacent
detector modules (Pahlevan et al., 2017b; Pahlevan et al., 2017c) with
one looking away from the sun and the other looking towards the sun
giving out different reflected radiances from the water surface or from
thick aerosol layers, i.e., haze. This slight difference yields residual

Fig. 10. MSI-A/B matchup analysis of Chla products derived from different processors and algorithms. More than >85% of matchups originate from autonomous
measurements made at buoys deployed in the Chesapeake Bay. Other lakes include Lake Simcoe, Lake Ontario, Lake Erie, Lake Superior, and Lake Winnipeg.
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differences in Rrs products, which may differ from one band to the
other. We speculate that because MDN utilizes all the available spectral
bands for Chla predictions, it is less susceptible to these noise sources.
In contrast, Blend and OC3 both rely on ratios of two or three bands
that may amplify the residual differences between the detector mod-
ules.

5. Discussion

Here, with a sizeable in situ dataset, originating from several regions
inclusive of diverse biogeochemical conditions, we demonstrated that
the MDN model is a viable solution for Chla estimation. The semi-global
nature of in situ data suggests its potential utility for global mapping of
Chla in inland and nearshore coastal waters for combined Sentinel-2
and -3 observations with near-daily revisit frequency.

5.1. Development dataset

Although this large database compiled through an ad-hoc, com-
munity-wide data sharing activity enabled a comprehensive testing of
the MDN model, there are evidently concerns about inconsistencies in
measurement/sampling techniques, the instrumentation and their cor-
responding calibration/performances, and how such differences reflect
in algorithm development and validation. On one hand, ideally,
radiometric data should be collected via well-calibrated instruments
and community-accepted protocols with a unified processing technique
(Ruddick et al., 2019). Nevertheless, relaxing such stringent require-
ments likely enables a more robust algorithm development and vali-
dation for a wider range of trophic conditions, which is what has been
adopted in this study. On the other hand, although our first-order
correction for pheophytin and other pigments appeared to improve the

quality of uncorrected in situ Chla measurements, the preferred method
for in situ Chla is the High Pressure Liquid Chromatography (HPLC)
(Roesler et al., 2017). Future coordinated field exercises may guarantee
high-quality datasets for algorithm design and assessment.

5.2. MDN model

Compared to traditional NNs, this class of NN helps overcome the
non-unique characteristic of the solution to the inverse problem of re-
trieving Chla using likelihoods generated in the training and validation
steps. When tested globally for its rigor, the MDN model, trained with
all the available data (n=2943), can be adopted for generating long-
term Chla products from high-quality Rrs climate records (Mélin et al.,
2017) in inland and nearshore coastal waters. Robust retrospective Chla
products will enable precise determination of baseline Chla for long-
term assessments of eutrophication in global waterbodies. Yet, its per-
formance for missions lacking spectral bands within the 700–800 nm
range should be thoroughly examined. While we find that MDN out-
performs most state-of-the-art algorithms, the uncertainties put forth in
Tables 2 and 3 further signify the need for improving MDN perfor-
mance. This may be achieved by simultaneously retrieving other water
quality parameter (e.g., TSS) and IOPs. As the implemented MDN model
learns the full covariance matrix between outputs, having these quan-
tities learnt concurrently with the true target improves estimates where
the input Rrs may be ambiguous. Moreover, like any other machine
learning algorithm, the accuracy of MDN is subject to the distribution of
field data and their uncertainties; hence, its performance can be much
improved with data acquired using a unified measurement approach.
For instance, although the maximum Chla value in our development
data is 1209mg/m3, the data distribution is quite sparse for
Chla>90mg/m3, limiting the utility of MDN in waters whose Chla

Fig. 11. OLCI-A Chla matchups processed via two AC methods and generated by MDN, OC4 (O'Reilly and Werdell, 2019), and Blend (Smith et al., 2018). Given the
statistical indicators (Section 3.4), MDN when processed via POLYMER provides better predictions than those from OC4 and Blend. Other lakes include Lake Simcoe,
Lake Ontario, Lake Erie, Lake Superior, and Lake Winnipeg.
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magnitudes exceed this threshold (Section 4.1). Recognizing strong
correlations between band-ratio indices and Chla, one may attempt to
supplement the input feature space with other features. However, in
practice, these band-ratio features may not enhance Chla estimations;
rather, they may lead to instability in the network induced by image-
derived, near-zero Rrs retrievals in ratio denominators, and thus, ex-
tremely large model inputs. In addition, as shown in Section 4.2, the
model performance is impacted by the uncertainties in Rrs, verifying
that the model is predictable and behaves as expected, i.e., inaccurate
inputs yield incorrect outcomes. Further examination of model beha-
vior and its sensitivity to various degrees of random or systematic noise
as well as to the choice of input bands should be considered in future
research efforts.

5.3. Map products and atmospheric correction

In spite of its remarkable performance (Bias= 1.0, RMSLE <0.6
and MAE<1.3) with respect to other existing algorithms (Section 4.1),

the MDN performance is hampered by the suboptimal removal of at-
mospheric effects (Section 4.2). Although the matchup database was
not as substantial as that used in the algorithm development and vali-
dation (in terms of both size and representativeness; e.g., >88% of MSI
matchups evaluated via POLYMER lies within the 1–15mg/m3 range),
our results indicate that, no matter how robust an algorithm is, the
atmospheric correction can constrain the ability to retrieve Chla. Al-
though one should note that the apparent retrieval uncertainty will also
be driven partly by the inherent difficulties in acquiring reliable
matchups in highly dynamic inland and coastal waters, where large
spatial (Pahlevan et al., 2016) and temporal variability in Chla may
exist. Furthermore, we find that the MDN model when supplied with
POLYMER-derived Rrs products allows for better predictions than those
by other models or processors and enables more retrievals (Zhang et al.,
2018). This, nevertheless, may not warrant high-fidelity products for
scientific studies as reflected in Figs. 10 and 11, where outliers can
evidently be found. In fact, relatively large errors (Figs. 10 and 11)
indicate that these products may be impracticable when high-quality

Fig. 12. MDN-derived Chla retrievals for common matchups processed via SeaDAS, POLYMER, and ACOLITE for 291 MSI-A/B and 218 OLCI-A images.
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science products are desired. In highly eutrophic waters, for instance,
POLYMER appears to be limited, likely due to the overly simplified in-
water model used in the polynomial fitting scheme (Steinmetz et al.,
2011).

Although limited in retrieving valid Rrs in a wide range of conditions
(Warren et al., 2019), SeaDAS shows promising Chla retrievals via the
MDN model. Band-ratio-based products derived, in particular from MSI,
should, however, be utilized with caution (Figs. 10, 12, and 13). The
low signal-to-noise-ratio of the NIR and SWIR bands of MSI yields noisy
band-ratios in Rayleigh corrected radiance space. Through aerosol
model selection and extrapolations, this noise is propagated to visible

bands, increasing the overall noise in Rrs products (Pahlevan et al.,
2017a; Pahlevan et al., 2017b). Since OLCI's radiometric performance is
better suited for ocean color applications (Donlon et al., 2012), this
issue is less pronounced in the respective products and can be further
minimized through spatial filtering, which was not applied in this study
(Section 3.3). In addition, Chla products obtained via all processors
over the Chesapeake Bay showed major biases. Since these biases are, to
some extent, reduced in POLYMER-based products, adjacency effects
may contribute to these uncertainties (Bulgarelli et al., 2014); although
more research is required to corroborate this speculation as the lack of
representative aerosol models (Pahlevan et al., 2017a) and/or

Fig. 13. Sensitivity of MDN, Blend and OC3 to imaging schemes and uncertainties in Rrs products for MSI images. The MDN-derived Chla maps (left column) are less
sensitive to image artifacts present in products obtained from both POLYMER (top and middle rows) and SeaDAS (bottom row). Note that MDN leverages all valid Rrs
measurements while Blend and OC3 use only select bands.
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uncertainties in the extrapolations into the blue bands in SeaDAS pro-
cessing (Ibrahim et al., 2019) may introduce additional uncertainties
(see Fig. A.1). Although the Blend algorithm applies a weighting
scheme to retrieve Chla for a broad span of trophic conditions, our
matchup assessments indicate that after implementing the AC, its per-
formance degrades significantly in less eutrophic waters (Chla<1mg/
m3) for both sensors (Figs. 10 and 11). In particular, Blend-derived
matchups from OLCI (Fig. 11) exhibits larger scatter compared to that
from OC4. This loss in performance was also observed (not shown here)
in map products of nearshore areas of the Great Lakes. While ACOLITE
exhibited biases within the most representative Chla range
(Chla<15mg/m3), the DSF scheme tends to provide more valid, and
likely better, Chla estimates in hypereutrophic waters, i.e., the Upper
Klamath matchups with Chla>70mg/m3, when MDN and Blend are
utilized. Given the quality of MSI products generated via SeaDAS, the
SWIR-based AC available in ACOLITE should certainly be avoided. Out
of the three AC processors evaluated, currently only SeaDAS produces
uncertainties associated with Rrs products. In particular, POLYMER,
which permits retrievals even under thin clouds, should inform per-
pixel uncertainties to assure availability of confidence metrics in
downstream products.

Despite the fact that this study assessed only a handful of AC pro-
cessors, the atmospheric correction appears be a major obstacle in re-
mote estimations of Chla through the MDN model, leading to at least
30% loss of performance (Sections 4.1 and 4.2). Therefore, for poten-
tially a more rigorous retrieval of Chla, a machine-learning method like
MDN may be trained with TOA or Rayleigh-corrected reflectance
matchups as input (Binding et al., 2011; Matthews et al., 2012). One
may also infer water type from TOA or Rayleigh-corrected reflectances
and then decide on applying an appropriate AC, though this scheme
may result in artifacts in map products and a blending approach may be
inevitable. Alternatively, a machine-learning model may be prescribed
with retrieved Rrs to learn the corresponding noise in the data, i.e.,
supply the model with realistically perturbed Rrs. Future studies should
also extend the matchup analysis provided here (Section 4.2) as our
assessments were primarily limited to Chla <15mg/m3, measured in
the Chesapeake Bay; consequently, the conclusion drawn from the
matchup analysis may not be generalized.

6. Conclusion

This manuscript presents a novel machine-learning algorithm
(MDN) applied to the inverse problem of retrieving Chla from Rrs for
Sentinel-2 (MSI) and Sentinel-3 (OLCI) observations. Using a set of
coincident in situ Chla – Rrs measurements (n=2943) made over a
diverse range of bio-optical regimes, the algorithm is trained, sub-
stantiated, and compared against state-of-the-art, community-accepted
algorithms. We demonstrate that the MDNmodel works equally well for
both MSI and OLCI data (Bias= 1.0, MAE<1.28, and RMSLE <0.62),
suggesting its potential in producing seamless high-quality Chla pro-
ducts. As evidenced through image and satellite matchup analyses
(n<800), the MDN model generates realistic spatial distributions and

produces most accurate Chla map products, though we find that the
model is sensitive to uncertainties in Rrs products. The lowest errors for
MSI products based on our matchups include Bias= 1.34, MAE=1.86,
and RMSLE=0.96, signifying the atmospheric correction as the main
hurdle in generating high-quality Chla products. Further research
should be directed towards global assessments of MDN applied to Rrs
products from various atmospheric correction processors (Doxani et al.,
2018) as well as towards further expansion and standardization of in
situ data collection methods. Moreover, because MDN learns the cov-
ariances among target variables, the model performance is expected to
be enhanced via simultaneous retrievals of various in-water parameters
of interest, i.e., Chla, TSS, IOPs, etc. Subject to a widespread corro-
boration of its potential, MDN implementation can be extended to other
optical remote sensing data as a pathway to move one step closer to-
wards producing seamless multimission Chla products using a single
algorithm over inland and coastal waters. Constructing such harmo-
nized products, nonetheless, may be hampered by complexities in-
troduced by inherent differences in remote-sensing observations and
inconsistencies in the atmospheric corrections. Hence, space agencies
and satellite operation organizations should elevate inter-agency/in-
ternational coordination to maximize the utility of joint constellations
prior and during the mission lifetimes.
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Appendix A

In what follows, a few widely used Chla algorithms implemented for intercomparison purposes are listed. Furthermore, the categorical per-
formance analyses for MDN, OC3, and Blend implemented to MSI-like Rrs are provided in Table A.1. The overall statistical analyses associated with
the performances of all the algorithms are also tabulated in Table A.2.
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OCx (OLCI) (Hu et al., 2012; O'Reilly and Werdell, 2019):
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Table A.1
Stratified performance metrics for the three algorithms implemented for MSI-simulated Rrs. The MDN model
exhibits major improvements over OC3 and Blend in mesotrophic and eutrophic waters, although the
improved performance is not as significant in hypereutrophic waters.

MSI RMSE 
(mg/m3)

Slope MAPE 
(%)

RMSLE Bias MAE MWR
(%)

TSI ≤30
Chla ≤ 0.94 

(n=186)
Median = 0.5 (mg/m3)

MDN 2.890 0.815 26.7 0.753 1.137 1.319 NA

OC4 12.770 1.208 125.0 1.412 2.250 2.250 86.9

Blend 79.320 0.635 201.4 1.971 3.014 3.037 90.7

30 < TSI ≤ 40
0.94 < Chla ≤ 2.6 

(n=290)
Median = 1.7 (mg/m3)

MDN 5.696 1.105 334.4 0.797 1.163 1.432 NA

OC4 17.635 0.991 219.7 1.713 3.197 3.450 89.9

Blend 18.403 1.006 289.6 1.782 3.896 4.003 93.3

40 < TSI ≤ 50
2.6 <Chla ≤ 6.4 

(n=352)
Median = 4.2 (mg/m3)

MDN 17.787 0.896 24.9 0.627 1.023 1.274 NA

OC4 18.172 0.474 113.1 1.205 2.131 2.172 83.2

Blend 23.031 0.380 141.5 1.216 2.415 2.428 88.7

50 < TSI ≤ 60
6.4 <Chla ≤ 20 

(n=568)
Median = 11.8 (mg/m3)

MDN 7.427 0.903 21.5 0.434 0.993 1.250 NA

OC4 16.238 0.118 48.4 0.782 1.087 1.669 72.9

Blend 12.276 0.449 41.1 0.623 1.336 1.461 66.9

60 < TSI ≤ 70
20 <Chla ≤ 56 

(n=357)
Median = 28.4 (mg/m3)

MDN 36.379 1.047 17.6 0.436 0.909 1.205 NA

OC4 39.712 0.632 50.1 0.995 0.608 1.862 79.8

Blend 17.481 0.947 23.8 0.403 1.029 1.261 59.6

70 < TSI ≤ 80
56 < Chla ≤ 154 

(n=161)
Median = 86.1 (mg/m3)

MDN 37.246 0.885 17.7 0.751 0.844 1.214 NA

OC4 80.631 0.481 82.6 1.779 0.204 4.892 88.8

Blend 41.989 0.723 35.2 0.689 0.651 1.536 63.8

TSI > 80
Chla > 154

(n=29)
Median = 195.3  (mg/m3)

MDN 196.018 0.610 47.8 1.043 0.521 1.918 NA

OC4 271.358 0.801 93.7 2.677 0.062 16.03 96.2

Blend 214.340 0.704 53.6 1.402 0.464 2.157 80.8

Table A.2
The overall performance analyses of various algorithms tested for MSI and OLCI simulated in situ Rrs. The MDN model provides enhanced predictions for Chla for both
missions with OLCI giving out slightly smaller errors.

RMSE
(mg/m3)

Slope MAPE
(%)

RMSLE Bias MAE MWR
(%)

Negative esti-
mates

MSI (n=1943)
MDN 30.31 0.876 24.0 0.616 0.995 1.275 N/A 0
OC2 17,103.2 0.463 67.2 1.356 1.092 2.116 79.1 0
OC3 43.25 0.484 74.5 1.276 1.419 2.137 81.7 0
OCx 43.19 0.496 74.6 1.499 1.409 2.145 81.7 0
2-Band 40.12 0.530 63.9 1.252 1.448 1.687 74.4 111
3-Band 72.692 0.428 88.0 1.415 1.669 1.841 78.4 159
Blend 40.77 0.585 62.1 1.199 1.550 1.757 76.5 0
NDCI 33.39 0.329 48.9 1.263 1.104 1.714 72.6 0

OLCI (n= 1905)
MDN 26.98 0.865 22.9 0.581 1.003 1.265 N/A 0
OC4 3364.6 0.581 81.0 1.309 1.645 2.221 82.7 0
OCx 47.33 0.581 83.3 1.495 1.678 2.247 83.7 0
2-Band 28.37 0.590 50.9 1.188 1.129 1.502 71.4 241
3-Band 42.80 0.475 66.2 1.207 1.291 1.529 73.1 310
Blend 31.66 0.624 69.3 1.351 1.640 1.867 77.1 0
NDCI 31.10 0.297 50.6 1.302 0.969 1.843 78.8 0
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Fig. A.1. Normalized frequency distributions of MSI- and OLCI-derived Rrs for the common matchups processed via the corresponding processors.
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